СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАЗЛИЧЕНИЯ ГАУССОВСКИХ КОРРЕЛИРОВАННЫХ И НЕКОРРЕЛИРОВАННЫХ СЛУЧАЙНЫХ СИГНАЛОВ ПО ОБУЧАЮЩИМ ВЫБОРКАМ КОНЕЧНОГО ОБЪЕМА.

Д. И. Леховицкий, П. М. Флексер, Д. В. Атаманский, С. И. Бурковский

Оцениваются статистические характеристики различения гауссовских коррелированных и некоррелированных случайных сигналов на основе пороговой обработки различных оценок коэффициентов корреляции, формируемых по обучающим выборкам конечного объема.

The statistical characteristics of discrimination of Gaussian correlated and non-correlated random signals on basis of threshold processing of different estimations of correlation factors obtained for small sample volume are evaluated.

1. Введение и постановка задачи

А. Задача различения коррелированных и некоррелированных случайных процессов по выборкам конечного объема возникает во многих технических приложениях. Одним из примеров, стимулировавших данную работу, является «сверхразрешающий» спектральный анализ в многоканальных по пространству и (или) времени системах приема. Во многих случаях он сводится к поиску точек экстремумов случайных «спектральных функций (**СФ**)» $\dot{S}(\alpha)$, по числу, координатам и значениям которых делаются выводы о количестве, «направлениях» (угловых, частотных) и относительных интенсивностях внешних источников излучения [1-9].

Случайный характер СФ $\dot{S}(\alpha) = S(\alpha, \vec{O})$ обусловлен их зависимостью от оценочной корреляционной матрицы (**KM**) $\dot{O} = \{\phi_{ij}\}_{i,j=1}^{M}$, которая используется взамен обычно априори неизвестной истинной KM $\ddot{O} = \overline{Y_i Y_i^*}$ ($i \in 1, K$) случайных M - мерных векторов Y_i комплексных амплитуд выходных сигналов M каналов приема^{*}). При этом даже в типичных случаях взаимно некоррелированных собственных шумов этих каналов (с диагональной KM) из-за конечности объема K обучающей выборки $Y = \{Y_i\}_{i=1}^{K}$ оценочная KM \dot{O} всегда отличается от диагональной. Построенные на ее основе случайные СФ могут иметь экстремумы не только при наличии, но и при отсутствии внешних источников излучений. В последнем случае эти экстремумы несут ложную информацию о внешней обстановке, что обычно недопустимо.

^{*)} Здесь и далее звездочка (*) и черта сверху – символы эрмитового сопряжения и статистического усреднения соответственно.

Вероятность подобной «ложной тревоги» можно уменьшить, если соответствующие СФ использовать только после обнаружения с высокой вероятностью факта коррелированности выходных сигналов смежных каналов приема.

Такой процедурой целесообразно предварять и использование хорошо известных [10, 11, 19] адаптивных фильтров обнаружения «ожидаемого» полезного сигнала $\mathbf{X} = \{x_i\}_{i=1}^{M}$ на фоне гауссовских помех с априори неизвестной КМ Ö. Вектор весов таких фильтров

$$\overset{\mathbf{j}}{\mathbf{R}} = \left\{ r_i \right\}_{i=1}^{M} = \overset{\mathbf{j}}{\mathbf{O}}^{-1} \mathbf{X}$$
(1)

строится на основе максимально правдоподобной (МП) оценки КМ

$$\overset{\mathbf{J}}{\mathbf{O}} = \{ \phi_{i,j} \}_{i,j=1}^{M} = K^{-1} \mathbf{A} , \qquad \mathbf{A} = \{ a_{i,j} \}_{i,j=1}^{M} = \mathbf{Y} \, \mathbf{Y}^{*} = \sum_{i=1}^{K} \mathbf{Y}_{i} \mathbf{Y}_{i}^{*} , \qquad (2)$$

формируемой по классифицированной выборке

$$\mathbf{Y} = \left\{ \mathbf{Y}_{i} \right\}_{i=1}^{K}, \qquad \mathbf{Y}_{i} = \left\{ y_{l}^{(i)} \right\}_{l=1}^{M}, \qquad \overline{\mathbf{Y}_{i}} = 0, \qquad \overline{\mathbf{Y}_{i}} \mathbf{Y}_{j}^{*} = \mathbf{\ddot{O}} \cdot \delta_{i,j}, \qquad i, j \in 1, K$$
(3)

объема *К* взаимно независимых ($\delta_{i,j} = 0$, $i \neq j$, $\delta_{i,i} = 1$) обучающих *М*-мерных векторов **Y**_i, ($i \in 1, K$) с одинаковой КМ **Ф**.

Как было показано еще в [10], в таком фильтре среднее значение выходного отношения сигнал / (помеха + шум) меньше максимально возможного в гипотетических условиях известной КМ в (K+1)/(K-M+2) раз и, следовательно, при любых $K \in M$, 2M - 3 меньше максимума на 3 дБ и более. В то же время при относительно слабых или низкокоррелированных внешних помехах, как и при их отсутствии, уровень потерь может быть меньше, если вместо фильтра (1) использовать существенно более простой согласованный фильтр с вектором весов $\mathbf{R} = \mathbf{X}$ (на это обстоятельство внимание одного из авторов обратил **М. А. Лейких**).^{*)}

Приведенные примеры далеко не исчерпывают круга задач адаптивной обработки, в которых те или иные функции оценочной КМ, в том числе МП оценок (2), целесообразно формировать только после принятия решения о том, что модуль $\rho \leq 1$ коэффициента корреляции сигналов смежных каналов приема превышает определенный уровень ρ_0 , диктуемый решаемой задачей.

Б. В данной статье исследуется процедура принятия такого решения на основе пороговой обработки различных оценок $\dot{p} \leq 1$ этого модуля, сформированных по элементам оценочной КМ **A** (2) или, что эквивалентно, обучающей выборки **Y** (3). Обработка заключается в сравнении случайных значений оценок \dot{p} с порогом x_0 , фиксирующим на заданном уровне вероятность

^{*)} Потери в фильтре (1) при слабой помехе можно уменьшить и за счет дополнения МП оценки (2) соответствующим образом подобранной матрицей-регуляризатором [11, 20], однако этот путь существенно сложнее, чем простой переход в этих условиях к согласованному фильтру.

$$F = \int_{x_0}^{1} p_{\rho}(x, \rho_0) \, dx \tag{4}$$

его превышения при истинном значении *ρ* ≤ *ρ*₀ (вероятность "ложной тревоги"). Качество решения характеризуется вероятностью

$$D = \int_{x_0}^{1} p_{\rho}(x, \rho) \, dx$$
 (5)

превышения этого порога при $\rho > \rho_0$ (вероятности «правильного различения»). Вероятности (4), (5) полностью определяются зависящей от истинного значения ρ плотностью распределения $p_{\beta}(x, \rho)$ используемой оценки (предпороговой статистики) $\dot{\rho}$.

Анализируемые ниже оценки имеют вид

$$\dot{\rho} = \dot{\rho}_{1} = \frac{\left|\sum_{l=1}^{L} a_{l,l+1}\right|}{\sqrt{\sum_{l=1}^{L} a_{ll} \cdot \sum_{l=1}^{L} a_{l+1,l+1}}}, \qquad \dot{\rho} = \dot{\rho}_{2} = \frac{\left|\sum_{l=1}^{L} a_{l,l+1}\right|}{\frac{1}{2} \sum_{l=1}^{L} \left(a_{ll} + a_{l+1,l+1}\right)}, \qquad L \in \mathbb{1}, \ M - 1.$$
(6a)

где, в соответствии с (2),

$$a_{mn} = \sum_{i=1}^{K} y_m^{(i)} \cdot y_n^{(i)*}, \qquad m, n \in 1, M.$$
(66)

В частном случае L = 1 оценки (6а) строятся из двумерных векторов $\mathbf{Y}_i = \{y_l^{(i)}\}_{l=1}^2$ $(i \in 1, K)$ выходных сигналов y_l (l = 1, 2) любой пары каналов с истинной 2×2 KM $\ddot{\mathbf{O}} = \{\varphi_{mn}\}_{m,n=1}^2 = \overline{\mathbf{Y}_i \cdot \mathbf{Y}_i^*}$. Первая из них является МП оценкой модуля коэффициента корреляции этих сигналов при произвольном соотношении $\eta^2 = \varphi_{11}/\varphi_{22} \neq 1$ их мощностей (дисперсий), тогда как вторая – только при равенстве этих мощностей $(\eta^2 = 1)$ [12, 21].

При L > 1 в общем случае недиагональной КМ **ö** (3) статистики (6а) не являются МП оценками соответствующих параметров, поскольку слагаемые сумм в них в этом случае, в отличие от слагаемых в (6б), не являются взаимно независимыми. Первая из них представляет собой оценку Итакуры-Саито, а вторая – оценку Берга модуля априори равных коэффициентов корреляции сигналов смежных каналов приема в условиях, когда истинная КМ **ö** является теплицевой [12-14]. Здесь их использование и в условиях КМ **ö** общего вида связано со смыслом решаемой задачи, в которой достаточно проверить справедливость неравенства $\overline{\rho} > \rho_0$ для среднего значения $\overline{\rho}$ модуля коэффициентов корреляции сигналов L пар каналов приема, разновидностями оценок которого являются статистики (6а) при L > 1.

В. Ниже для этих статистик определяются:

- пороговые уровни x_0 для различных значений вероятности «ложной тревоги» F (4);
- различия между значениями ρ и ρ₀, обеспечивающие заданный уровень вероятности «правильного различения» D(5);
- сравнительный вклад накопления независимых (6б) и зависимых (6а) слагаемых в улучшение статистических характеристик различения.

Основное внимание уделяется зависимости этих показателей от объема *К* обучающей выборки Y (3).

В п.2 отыскивается, а в п.3 анализируется точное решение первых двух задач в частном случае L = 1 (при отсутствии "внутриматричного" накопления). Решение существенно опирается на известное свойство случайной матрицы **A** (2), в условиях (3) имеющей комплексное распределение Уишарта [1, 8, 10]

$$p(\mathbf{A}) = c |\mathbf{A}|^{K-M} \exp\left\{-tr \,\ddot{\mathbf{o}}^{-1}\mathbf{A}\right\}, \qquad c^{-1} = \pi^{M(M-1)/2} |\ddot{\mathbf{o}}|^{K} \prod_{i=1}^{M} \Gamma(K+1-i), \qquad K \ge M, \qquad (7)$$

где $|\mathbf{B}|$ и *tr* **B** - детерминант и след матрицы **B** соответственно, $\tilde{A}(x)$ - гамма-функция [16], для целого $x = n \ge 1$ равная $\Gamma(n) = (n-1)!$

Формулой (7) «экономно» записана совместная плотность распределения M^2 действительных случайных величин, определяющих эрмитову матрицу $\mathbf{A} - M$ диагональных элементов a_{ii} ($i \in 1, M$) и M(M-1) реальных (a'_{il}) и мнимых (a''_{il}) частей ее комплексных наддиагональных элементов $a_{il} = a'_{il} + ja''_{il}$ ($i \in 1, M-1$; $l \in i+1, M$). Параметрами плотности (7) являются «эффективный» объем выборки $\delta = K - M \ge 0$ и элементы истинной КМ $\ddot{\mathbf{O}} = \{\varphi_{mn}\}_{m,n=1}^{M}$.

Для общего случая *L* > 1, для которого точное решение не найдено, в п.4 обсуждаются результаты эксперимента на модели, тестированной по точным решениям.

2. Точные плотности распределения в частном случае L = 1.

А. В этом случае статистики (6) равны

$$\dot{\rho}_1 = \frac{|a_{12}|}{\sqrt{a_{11}a_{22}}}, \qquad \dot{\rho}_2 = \frac{|a_{12}|}{\frac{1}{2}(a_{11} + a_{22})}, \qquad (8a)$$

а совместная плотность определяющих их элементов

$$a_{mn} = a'_{mn} + ja''_{mn} = \sum_{i=1}^{K} y_m^{(i)} y_n^{(i)*}, \qquad m, n \in 1,2$$
(86)

эрмитовой 2×2 матрицы A (2) описывается формулой (7) при M = 2.

Обозначая через $\mathbf{\tilde{U}} = \{\omega_{il}\}_{i,l=1}^2, \ \omega_{12} = \omega'_{12} + j\omega''_{12}$ неслучайную эрмитову 2×2 матрицу

 $\mathbf{\tilde{U}} = \mathbf{\ddot{O}}^{-1}$ и учитывая, что в этих обозначениях

$$|\Omega|^{K} = |\Phi|^{-K} = (\omega_{11}\omega_{22})^{K}(1-\rho)^{K}, \quad \rho = |\omega_{12}|/\sqrt{\omega_{11}\omega_{22}},$$

$$tr \,\Phi^{-1}\mathbf{A} = tr \,\tilde{\mathbf{U}}\mathbf{A} = \omega_{11}a_{11} + \omega_{22}a_{22} + 2\left(\omega_{12}'a_{12}' + \omega_{12}''a_{12}''\right),$$

$$(9)$$

для этой плотности получим:

$$p(\mathbf{A}) = c \left(a_{11}a_{22} - |a_{12}|^2 \right)^{\delta} e_1(a_{11}) e_2(a_{22}) \exp\{-2(\omega_{12}'a_{12}' + \omega_{12}''a_{12}'')\},$$
(10)

где, в соответствии с (7), (9), при M = 2

,

$$c = \frac{(\omega_{11}\omega_{22})^{K}(1-\rho^{2})^{K}}{\pi(K-1)\Gamma^{2}(K-1)}, \qquad \delta = K-2, \qquad e_{i}(z) = \exp\{-\omega_{ii}z\}, \qquad i \in 1,2.$$
(11)

Используя представления реальной и мнимой частей элемента a_{12}

$$a'_{12} = r\cos\varphi, \qquad a''_{12} = r\sin\varphi \qquad (12)$$

через его модуль r и фазу ϕ , перепишем оценки (8a) в виде

$$\dot{p}_1 = r / \sqrt{a_{11} a_{22}}, \qquad \dot{p}_2 = 2r / (a_{11} + a_{22}), \qquad (13)$$

При этом плотность (10) преобразуется в плотность

$$p(a_{11}, a_{22}, r, \varphi) = c r \left(a_{11}a_{22} - r^2 \right)^{\delta} e_1(a_{11}) e_2(a_{22}) \exp\{-2r(\omega_{12}' \cos \varphi + \omega_{12}'' \sin \varphi)\},$$

при выводе которой учтено, что якобиан преобразования (12) равен *г*.

Совместную плотность величин, определяющих оценки (13), получим интегрированием последней плотности по фазе φ в пределах от нуля до 2π . В результате получим [15]

$$p(a_{11}, a_{22}, r) = 2\pi c r \left(1 - \frac{r^2}{a_{11} a_{22}}\right)^{\delta} a_{11}^{\delta} e_1(a_{11}) a_{22}^{\delta} e_2(a_{22}) I_0(2 | \omega_{12} | r)$$
(14)

где

$$I_0(u) = \sum_{n=0}^{\infty} u^{2n} \left/ \left(2^{2n} \Gamma^2(n+1) \right) \right.$$
 (15)

модифицированная функция Бесселя нулевого порядка [16].

Б. Дальнейший вывод проведем для оценки $\dot{p} = \dot{p}_1$ (13).

Введем новые случайные величины

$$b_1 = a_{11},$$
 $b_2 = a_{22},$ $p_1 = r/\sqrt{b_1 b_2}$

Якобиан этого преобразования равен $\sqrt{b_1 b_2}$, поэтому их совместная плотность равна

$$p(b_1, b_2, \dot{p}_1) = 2 \pi c \dot{p}_1 \left(1 - \dot{p}_1^2\right)^{\delta} b_1^{\delta + 1} e_1(b_1) b_2^{\delta + 1} e_2(b_2) I_0\left(2 |\omega_{21}| \dot{p}_1 \sqrt{b_1 b_2}\right).$$
(16)

Искомая плотность $p_{\rho}(x) = \int_{0}^{\infty} p(b_1, b_2, x) db_1 db_2$ для $\dot{\rho} = \dot{\rho}_1$ с учетом (16), (15), (11)

допускает представление

$$p_{\dot{\rho}}(x) = 2 \pi c x \left(1 - x^2\right)^{\delta} \sum_{n=0}^{\infty} \frac{\left|\omega_{21}\right|^{2n} x^{2n}}{\Gamma^2(n+1)} J_1(n) J_2(n), \qquad \dot{\rho} = \dot{\rho}_1, \tag{17}$$

где, в соответствии с (10), (11), $J_i(n) = \int_0^\infty b_i^{n+\delta+1} e_i(b_i) db_i = \int_0^\infty b_i^{n+\delta+1} e^{-\omega_{ii}b_i} db_i = \Gamma(n+K)/\omega_{ii}^{n+K}$, i = 1, 2.

Последнее равенство позволяет переписать плотность (17) в виде

$$p_{\rho}(x) = 2\pi \frac{c}{(\omega_{11}\omega_{22})^{K}} x \left(1 - x^{2}\right)^{K-2} \sum_{n=0}^{\infty} \left(\frac{|\omega_{21}|^{2}}{\omega_{11}\omega_{22}}\right)^{n} x^{2n} \frac{\Gamma^{2}(n+K)}{\Gamma^{2}(n+1)}, \quad \dot{\rho} = \dot{\rho}_{1}$$

откуда, учитывая (9), (11),

$$p_{\rho}(x) = \frac{2\left(1-\rho^{2}\right)^{K}}{\left(K-1\right)\Gamma^{2}\left(K-1\right)} x \left(1-x^{2}\right)^{K-2} \sum_{n=0}^{\infty} \frac{\Gamma^{2}(n+K)}{\Gamma^{2}(n+1)} (\rho x)^{2n} .$$
(18)

Используя известные представления ряда [16]

$$\sum_{n=0}^{\infty} y^n \frac{\Gamma^2(n+K)}{\Gamma^2(n+1)} = \frac{\Gamma^2(K)}{(1-y)^K} P_{K-1}(z) = \frac{\Gamma^2(K)}{(1-y)^K} L_{-K}(z), \qquad z = \frac{1+y}{1-y}$$

через полиномы $P_{\nu}(z)$ и функции $L_{\mu}(z)$ Лежандра, получим еще два эквивалентных равенства

$$p_{\rho}(x,\rho) = c(x,\rho)P_{K-1}(z) = c(x,\rho)L_{-K}(z)$$

$$c(x,\rho) = (K-1)\frac{2x(1-x^2)^{K-2}}{(1-\rho^2 x^2)^K}(1-\rho^2)^K, \qquad z = \frac{1+\rho^2 x^2}{1-\rho^2 x^2},$$
(19)

для искомой плотности статистики $\dot{\rho} = \dot{\rho}_1$, более удобные для анализа и вычислений^{*)}.

В. Аналогичным образом, но после достаточно громоздких преобразований, можно получить и плотность распределения оценки $\dot{\rho} = \dot{\rho}_2$, (8), (13):

$$p_{\rho}(x,\rho,\eta) = (2K-1) \left(\frac{2\eta}{1+\eta^2}\right)^{2K} (1-p^2)^K x (1-x^2)^{K-3/2} \times F_4 \left[K, K+\frac{1}{2}; 1, K-\frac{1}{2}; \left(\frac{2\eta\rho}{1+\eta^2}x\right)^2, \left(\frac{1-\eta^2}{1+\eta^2}\right)^2 (1-x^2)\right], \qquad \dot{\rho} = \dot{\rho}_2.$$
(20)

Здесь F₄ (*a*,*b*;*c*,*d*;*y*,*z*) - функция Аппеля [16, c.193].

В отличии от (19), плотность (20) зависит не только от истинного значения модуля ρ коэффициента корреляции анализируемой пары сигналов, но и от отношения η^2 их мощностей.

^{*)} Равенства (19) лишены отмеченных в [18] недостатков формулы (18), впервые полученной несколько иным способом еще в [17].

3. Статистические характеристики различения при L = 1.

А. Формулы (18) - (20) в сочетании с (4), (5) решают первые две задачи п.1.В при произвольных "пороговых" значениях $\rho_0 < 1$. В рассматриваемой здесь задаче значение $\rho_0 = 0$. При этом плотности (18)-(20) преобразуются к виду

$$p_{\rho}(x,\rho_0) = 2(K-1) x (1-x^2)^{K-2}, \qquad \dot{\rho} = \dot{\rho}_1, \qquad (21)$$

$$p_{p}(x,\rho_{0},\eta) = \frac{\left(4\eta^{2}\right)^{K} \left[2K\left(1+\eta^{2}\right)^{2}-\left(1-\eta^{2}\right)^{2}x^{2}-4\eta^{2}\right]}{\left[4\eta^{2}+\left(1-\eta^{2}\right)^{2}x^{2}\right]^{K+1}} x\left(1-x^{2}\right)^{K-3/2}, \quad \dot{\rho} = \dot{\rho}_{2}.$$
(22)

В частном случае равенства мощностей ($\eta = 1$) последняя плотность равна

$$p_{\rho}(x, p_0, \eta) = 2 \left(K - \frac{1}{2} \right) x \left(1 - x^2 \right)^{K - \frac{3}{2}}, \quad \rho = \rho_2, \quad \eta = 1.$$
(23)

В соответствии с (4), пороговые уровни x_0 , обеспечивающие заданную вероятность ложной тревоги *F*, являются корнями уравнений

$$F = (1 - x_0^2)^{K-1}, \qquad \stackrel{)}{\rho} = \stackrel{)}{\rho}_1,$$
 (24)

$$F = \frac{(4\eta^2)^K (1 - x_0^2)^{K - 1/2}}{\left(4\eta^2 + (1 - \eta^2)^2 x_0^2\right)^K}, \qquad \dot{\rho} = \dot{\rho}_2, \qquad (25)$$

$$F = (1 - x_0^2)^{K - \frac{1}{2}}, \qquad \stackrel{)}{\rho} = \stackrel{)}{\rho}_2, \qquad \eta = 1,$$
(26)

которые в условиях (24), (26) равны

$$x_0 = (1 - F^{\frac{1}{K-1}})^{1/2}, \quad \dot{\rho} = \dot{\rho}_1; \qquad x_0 = (1 - F^{\frac{1}{K-1/2}})^{1/2}, \quad \dot{\rho} = \dot{\rho}_2, \quad \eta = 1.$$
 (27)

В таблицах 1, 2 приведены значения x_0 для рассматриваемых оценок, рассчитанные по (25), (27) для набора вероятностей ложной тревоги $F \in 10^{-1}, 10^{-4}$, объемов выборки $x \in 5, 120$ и отношений мощностей $\eta^2 = 1, 10, 100$.

Видно, что при $\eta^2 = 1$ пороговые уровни x_0 для обеих оценок близки между собой, и разница между ними, в соответствии с (27), уменьшается по мере роста объема выборки *K*.

При фиксированных значениях F и K и $\eta^2 > 1$ порог x_0 для оценки \dot{b}_1 больше, чем для оценки \dot{b}_2 , и с ростом η^2 разница между ними увеличивается. Достаточно очевидной причиной этого является различие знаменателей оценок \dot{b}_1 и \dot{b}_2 (8а), представляющих собой соответственно среднее геометрическое и среднее арифметическое одних и тех же случайных величин. Увеличение η^2 увеличивает вероятность роста различий между ними и, тем самым, между знаменателями в целом, что увеличивает вероятность выполнения неравенства $\dot{\rho}_2 < \dot{\rho}_1$, следствием которого и является меньшее значение порога x_0 для оценки $\dot{\rho} = \dot{\rho}_2$.

Пороговые уровни x_0 для оценки $\dot{b} = \dot{b}_1$ при L = 1

Таблица 2.

K F	5	10	15	20	30	45	60	75	90	105	120
10 ⁻¹	0.661	0.475	0.389	0.338	0.276	0.226	0.196	0.175	0.160	0.148	0.138
10 ⁻²	0.827	0.633	0.529	0.464	0.383	0.315	0.274	0.246	0.224	0.208	0.195
10 ⁻³	0.907	0.732	0.624	0.552	0.460	0.381	0.332	0.298	0.273	0.254	0.237
10-4	0.949	0.800	0.694	0.620	0.522	0.434	0.380	0.342	0.314	0.291	0.273

Пороговые уровни x_0 для оценки $\dot{\rho} = \dot{\rho}_2$ при L = 1

F	η^2 K	5	10	15	20	30	45	60	75	90	105	120
10 ⁻¹	1	0.633	0.464	0.383	0.334	0.274	0.224	0.195	0.174	0.159	0.148	0.138
	10	0.411	0.283	0.229	0.198	0.161	0.131	0.113	0.101	0.092	0.085	0.080
	100	0.150	0.100	0.080	0.069	0.056	0.045	0.039	0.035	0.032	0.029	0.028
10 ⁻²	1	0.800	0.620	0.522	0.459	0.380	0.314	0.273	0.245	0.224	0.208	0.194
	10	0.591	0.407	0.328	0.282	0.229	0.186	0.160	0.143	0.131	0.121	0.113
	100	0.238	0.150	0.118	0.100	0.080	0.065	0.056	0.050	0.045	0.042	0.039
10 ⁻³	1	0.886	0.719	0.616	0.546	0.457	0.379	0.331	0.298	0.272	0.253	0.237
	10	0.722	0.503	0.405	0.348	0.282	0.228	0.197	0.176	0.160	0.148	0.139
	100	0.326	0.194	0.150	0.126	0.100	0.080	0.069	0.061	0.056	0.052	0.048
10-4	1	0.933	0.788	0.686	0.613	0.518	0.432	0.379	0.341	0.313	0.290	0.272
	10	0.816	0.584	0.471	0.404	0.327	0.265	0.228	0.204	0.186	0.172	0.160
	100	0.419	0.237	0.180	0.150	0.118	0.094	0.080	0.071	0.065	0.060	0.056

Этот же эффект иллюстрируют семейства плотностей $p_{\rho}(x,\rho_0)$ (21) и $p_{\rho}(x,\rho_0,\eta^2)$ (22), $\rho_0 = 0$, приведенные на рис.1. Здесь он проявляется в существенном "смещении влево" плотностей оценки $\dot{\rho}_2$ (рис.1б) при $\eta^2 = 100$ по отношению к плотностям оценки $\dot{\rho}_1$ (рис.1а) с теми же параметрами K, тогда как при $\eta = 1$, в соответствии с (21), (23), они практически совпадают при "больших" K >> 1.

Б. На рис.2 для $F = 10^{-3}$ (а) и $F = 10^{-2}$ (б) приведены характеристики различения $D(\rho)$ коррелированных ($\rho > 0$) и некоррелированных ($\rho = 0$) процессов, обеспечиваемые пороговой

обработкой оценок (8a).^{*)} Они решают вторую задачу п.1.В и количественно иллюстрируют влияние роста объема выборки K в (8б) на возможности уменьшения значения ρ без потерь в характеристиках различения. В частности, для оценки $\dot{\rho}_1$ это влияние показано в таблице 3.

Вначения	ρ ,	«различаемые»	на	основе	оценки

Таблица 3.

 p_1

F	D	5	15	45	120	500	1000	5000	10000
10-3	0.9	0.95	0.74	0.48	0.32	0.15	0.11	0.05	0.038
	0.5	0.88	0.6	0.38	0.24	0.11	0.08	0.035	0,025
10 ⁻²	0.9	0.91	0.66	0.42	0.27	0.135	0.1	0.045	0.03
	0.5	0.18	0.5	0.3	0.18	0.09	0.062	0.03	0.02

Как видно из графиков рис.2, при $\eta = 1$ МП оценка $\dot{\beta}_2$ и (не МП) оценка $\dot{\beta}_1$ практически эквивалентны. Однако при $\eta^2 >> 1$ и выборке "малого" объема $K \le 40$ оценка $\dot{\beta}_2$, в этих условиях не являющаяся МП, может заметно уступать МП оценке $\dot{\beta}_1$. По мере роста K > 40различие между ними становится практически несущественным, а оценка $\dot{\beta}_2$, как более простая, предпочтительнее. При этом "различаемые" на ее основе значения ρ можно считать совпадающими с приведенными в табл.3 для $K \ge 45$ при любых $\eta^2 \le 100$.

Из табл.3 видно также, что в рассматриваемом случае (L=1) для эффективного $(F=10^{-2}, 10^{-3}; D \ge 0.9)$ различения слабокоррелированных $(\rho \le 0.1)$ процессов требуются выборки большого объема $K \ge 500-1000$, которые могут быть практически недоступны. Ниже показывается, что в многоканальных (M >> 1) по пространству (времени) системах приема эти требования могут быть снижены за счет перехода к оценкам (6) со значениями L > 1.

4. Статистические характеристики различения при L > 1.

А. Для этого случая получить точные плотности распределения оценок (6) не удалось, поэтому подобные приведенным на рис.2 и табл.3 характеристики различения определялись путем математического моделирования, включавшего в себя два этапа.

На каждом из них в $N \ge 10^4$ испытаниях по заданной $M \times M$ КМ Ö (диагональной на первом этапе и недиагональной - на втором) формировались K -мерные обучающие выборки $\mathbf{Y} = \{\mathbf{Y}_i\}_{i=1}^{K}$ со свойствами (3), которые использовались для вычисления диагональных ($a_{l,l}$, $l \in 1, L+1$) и наддиагональных ($a_{l,l+1}$, $l \in 1, L$) элементов $M \times M$ матрицы \mathbf{A} (2) и оценок (6) на их основе при различных значениях L < M. По результатам этих N испытаний строились эмпирические плотности (гистограммы) и функции распределения полученных оценок. По этим

^{*)} Расчетные соотношения для кривых рис.2, полученные по (5), (19), (20), весьма громоздки и поэтому не приведены.

функциям на первом этапе определялись пороги x_0 , фиксирующие заданную вероятность "ложной тревоги" $F = 10^{-3}$, а на втором - вероятности правильного различения D для использованных на этом этапе разновидностей КМ Ö. Последние задавались в форме [19]

$$\ddot{\mathbf{O}} = \mathbf{I}_{M} + \ddot{\mathbf{O}}_{B}, \qquad \ddot{\mathbf{O}}_{B} = \left\{ \varphi_{ij}^{(B)} \right\}_{i,j=1}^{M},$$
(28)

где I_M - единичная $M \times M$ матрица, имеющая смысл КМ взаимно некоррелированных шумов M каналов приема с одинаковой (единичной) дисперсией (мощностью), $\ddot{O}_B - M \times M$ КМ внешних воздействий на выходах этих каналов.

Свойства именно этой матрицы в условиях (28) определяют вклад взаимно зависимых слагаемых сумм в (6а) в улучшение статистических характеристик различения (см. п.1.В).

Б. На рис.3 приведены семейства характеристик различения $D(\rho)$ для $F = 10^{-2}$, полученные при задании матрицы $\ddot{\mathbf{o}}_B$ в виде $\ddot{\mathbf{o}}_B = \sigma^2 \cdot \mathbf{\tilde{n}}$, где σ^2 - мощность внешних воздействий, $\mathbf{\tilde{n}} = \{\rho_{ij}\}_{i,j=1}^M$ - их нормированная корреляционная матрица с элементами

$$\rho_{il} = \rho^{|i-l|} \quad \text{w} \quad \rho_{il} = I_{|i-l|}(a) / I_0(a), \quad \eta = 1, \quad i, l \in 1, M$$
(29)

для рис.3а и рис.3б соответственно.

Здесь $I_{\nu}(x)$ - модифицированная функция Бесселя ν -го порядка [16], a - корень уравнения $\rho = I_1(a)/I_0(a)$. Параметром семейств кривых на рис.3 служит произведение $\Pi = K \times L$ числа K независимых слагаемых в (бб) на число L зависимых в (ба).

Видно, что модельные кривые рис.3 при $\Pi = K \times 1$ практически воспроизводят точные кривые рис.2 с теми же значениями K и $\eta^2 = 1$, что свидетельствует о высокой точности результатов моделирования.

В условиях (29) кривые рис.3 с равными параметрами $\Pi = K \times 1$ и $\Pi = 1 \times L$ при всех Π близки между собой. Это означает, что вклад в улучшение характеристик различения зависимых слагаемых весьма незначительно уступает вкладу независимых, особенно в условиях рис.36. Поэтому в условиях (29) в многоканальных (M >> 1) системах приема вытекающие из рис.2 и табл.3 требования к объему выборки K могут быть снижены примерно в $L \leq M - 1$ раз.

В. На рис.4а и 46 приведены аналогичные рис3а,6 характеристики различения, но для случая, когда элементы *ρ_{i1}* корреляционной матрицы внешних воздействий равны соответственно

$$\rho_{il} = \rho^{|\gamma_i - \gamma_l|} \quad \text{M} \quad \rho_{il} = I_{|\gamma_i - \gamma_l|}(a) / I_0(a) , \quad i, l \in 1, M ,$$
(30)

где $\gamma_{\nu} = \nu + \varepsilon_{\nu}$, $\nu \in 1, M$, $\varepsilon_{\nu} - \nu$ -е значение случайной величины, равномерно распределенной на интервале [0, 0.5], параметр *a*, как и в (29) - корень уравнения $\rho = I_1(a)/I_0(a)$.

В отличие от (29), определяемая по (30) КМ $\mathbf{\tilde{n}} = \{ \rho_{il} \}_{i,l=1}^{M}$, а следовательно, и КМ $\ddot{\mathbf{O}}_{B}$ и $\ddot{\mathbf{O}}_{B}$ (28), не являются теплицевыми. В этом случае, как следует из сравнения соответствующих результатов рис.3 и рис.4, вклад зависимых слагаемых в улучшение характеристик различения уменьшается, но остается достаточно весомым. Так, переход от $\Pi = 5 \times 1$ к $\Pi = 5 \times 3$ и $\Pi = 5 \times 9$ позволяет перейти к различению с вероятностями $F = 10^{-2}$ и D = 0.9 коррелированных процессов с коэффициентами корреляций от $\rho \approx 0.88$ до $\rho \approx 0.65$ и $\rho \approx 0.43$ соответственно, что не намного больше значений $\rho \approx 0.6$ и $\rho \approx 0.38$, различаемых при $\Pi = 15 \times 1$ и $\Pi = 45 \times 1$. Переход от $\Pi = 15 \times 1$ к $\Pi = 15 \times 8$ уменьшает различимое с этими же характеристиками значение ρ от 0.6 до $\rho \approx 0.25$, тогда как при $\Pi = 120 \times 1$ оно уменьшается до $\rho \approx 0.23$.

Г. Обратим теперь внимание, что равенства (29), (30) описывают КМ *М*-мерного случайного вектора эквидистантных (29) или неэквидистантных (30) отсчетов стационарных процессов со спектрами мощности

$$S(f) = S_1(f) = \frac{1 - \left|\rho\right|^2}{1 - 2\rho \cos 2\pi f + \left|\rho\right|^2} \quad \text{if } S(f) = S_\infty(f) = \frac{e^{a\cos 2\pi f}}{I_0(a)}, \quad \left|f\right| \le 1/2$$
(31)

и модулем $\rho = | \mathcal{A} |$ коэффициента корреляции отсчетов, разделенных единичным интервалом. Эти спектры представляют собой «предельные» формы унимодальных спектров

$$S(f) = \frac{c}{(1 - 2\beta \cos 2\pi f + |\beta|^2)^p}, \quad |\beta| < 1, \quad |f| \le 1/2$$
(32)

процессов авторегрессии первого (p = 1) и бесконечного высокого ($p \to \infty$) порядков [22]. Фаза в общем случае комплексного параметра β определяет расположение моды спектра (32) на оси f, а его модуль $|\beta| < 1$ - значение ρ .

Представление (32) охватывает довольно обширный класс спектров отсчетов реальных случайных процессов и широко используется, в частности, для описания спектров междупериодных флюктуаций пассивных помех различной природы в импульсных РЛС с постоянным или переменным интервалами зондирования [13, 19, 22]. «Предельный» характер спектров (31) и, следовательно, КМ в (29), (30) позволяет предположить, что приведенные на рис.За и 36, а также на рис.4а и 4б характеристики различения указывают границы, в которых лежат характеристики различения процессов AP произвольного порядка p с унимодальными спектрами мощности (32) при эквидистантном (рис.3) или неэвидистантном (рис.4) расположении отсчетов.

Д. Возможности «размена» числа K независимых слагаемых в (6б) на число L зависимых в (6а) без заметных потерь в характеристиках различения резко снижаются в условиях входных воздействий с дискретными спектрами $S(\alpha)$ и КМ Φ_B вида

$$S(\alpha) = \sum_{i=1}^{n} h_i \delta(\alpha - \alpha_i), \qquad \Phi = \mathbf{F} \cdot \mathbf{h} \cdot \mathbf{F}^*.$$
(33)

Эти представления широко применяются, в частности, для описания пространственного спектра и КМ колебаний, создаваемых на выходах M-элементной линейной Φ AP $n \ge 1$ точечными по угловым координатам источниками независимых излучений с относительной (по отношению к собственным шумам элементов) интенсивностью h_i с направлений θ_i относительно нормали, определяющих их «пространственные» частоты $\alpha_i = \sin \theta_i / \lambda$ $(i \in 1, n)$, где λ - длина волны [19]. В (33) $\mathbf{h} = diag \{h_i\}_{i=1}^n$ - диагональная матрица с элементами h_i на главной диагонали, $\mathbf{F} = \{\mathbf{X}(\alpha_i)\}_{i=1}^n$ - $M \times n$ матрица с M-мерными столбцами $\mathbf{X}(\alpha_i) = \{x_v(\alpha_i)\}_{v=1}^M, x_v(\alpha_i) = e^{j2\pi d_v \alpha_i}$, описывающими фазовое распределение колебания i -того источника по элементам Φ AP, d_v - расположение v-го элемента относительно первого с $d_1=0$.

На рис.5 приведены характеристики различения для процессов с КМ Φ_B (33) при действии n = 2 источников равномощных ($h_1 = h_2 = h$) излучений с относительным (по отношению к полуширине диаграммы направленности M-элементной линейной эквидистантной Φ AP по уровню первых нулей) угловым расстоянием $\Delta = 0.7$ (а) и $\Delta = 0.3$ (б) между ними при $d_v = d \gamma_v$, где d - среднее расстояние между элементами Φ AP, а γ_v ($v \in 1, M$) определяется как и в (30).

Видно, что в этом случае увеличение числа L коррелированных слагаемых в (6а) существенно слебее улучшает характеристики различения, чем в условиях КМ (29), (30) (рис.3, 4), и их вклад уменьшается по мере уменьшения расстояния Δ между источниками.

Причина этого связана с тем, что при n < M ранг $M \times n$ матрицы **F** и, следовательно матрицы Φ_B (33), не превосходит n, что принципиально отличает ее от невырожденных матриц (29), (30), имеющих полный ранг M при произвольных параметрах спектров (31), (32).

5. Заключение

- Получены статистические характеристики различения гауссовских коррелированных и некоррелированных процессов на основе пороговой обработки оценок коэффициентов корреляции различного вида, формируемых по обучающим выборкам конечного объема.
- Показано, что в многоканальных (по пространству или времени) системах приема требования к объему выборки могут снижаться за счет усреднения (в общем случае коррелированных) оценок коэффициентов корреляции сигналов смежных каналов приема. Эффект от такого усреднения определяется видом корреляционной матрицы выходных колебаний в целом.

 При малых различиях мощности процессов в каналах приема оценки Берга среднего значения модуля коэффициента корреляции предпочтительнее оценки Итакуро-Саито, поскольку при меньшей сложности обеспечивает практически те же характеристики различения.

Авторы от души поздравляют Льва Давидовича Бахраха с юбилеем и желают ему долгих лет активной творческой жизни.

Литература

- 1. Черемисин О.П. Эффективность адаптивных методов пеленгации помех // Радиотехника и электроника. 1989. т.34. №9. С.1850-1861.
- 2. Мюнье Ж., Делиль Ж.Ю. Пространственный анализ в пассивных локационных системах с помощью адаптивных методов // ТИИЭР. 1987. т.75. №11. С.21-37.
- 3. Марпл мл. С.Л. Цифровой спектральный анализ и его приложения / Пер. с англ. М.: Мир, 1990. 584 с.
- 4. Stoica P. and Moses R. Introduction to Spectral Analysis, Prentice Hall, Upper Saddle River, NJ, 1997.
- 5. Гершман А. Б. Комбинированная пеленгация с совместным использованием высокоразрешимых пеленгаторов различного типа // Радиотехника и электроника. 1995. Вып.5. С.918-924.
- 6. Krim H. and Viberg M. Two Decades of Array Signal Processing Research // IEEE Signal Processing Magazine, July 1996.
- 7. Дрогалин В. В., Меркулов В. И., Родзивилов В. А. и др. Алгоритмы оценивания угловых координат источников излучения, основанные на методах спектрального анализа // Радиолокация и радиометрия. 1999. №1. С.52-68.
- 8. Леховицкий Д.И., Атаманский Д.В., Кириллов И.Г., Флексер П.М. Статистический анализ «сверхразрешающих» методов пеленгации источников шумовых излучений в АР при конечном объеме обучающей выборки // Антенны. – 2000. – №2. – С.23-39.
- 9. .Леховицкий Д.И., Атаманский Д.В., Кириллов И.Г. Разновидности "сверхразрешающих" анализаторов пространственно-временного спектра случайных сигналов на основе обеляющих адаптивных решетчатых фильтров // Антенны. 2000. №2. С.40-54.
- 10. Reed I.S., Mallet I.D., Brennan L.E. Rapid convergence rate in adaptive arrays // IEEE Trans. Aerosp. Electr. Syst. 1974. v.10. № 6. P.853-863.
- 11. Бялый М.И., Елистратов С.М. Сравнение цифровых алгоритмов адаптивной обработки сигналов в системах с предварительным формированием лучей // Радиотехника и электроника. 1985. т.30. №12. С.2378.
- 12. Берг Дж. П., Люнбергер Д.Г., Венгер Д.Д. Оценивание ковариационных матриц с заданной структурой // ТИИЭР. 1982. т.70. №9. С.63-76.
- 13. Фридландер Б. Решетчатые фильтры для адаптивной обработки данных // ТИИЭР. 1982. т.70. №8. С.54-97.
- 14. Леховицкий Д.И., Милованов С.Б., Раков И.Д., Свердлов Б.Г. Универсальные адаптивные решетчатые фильтры. Ч.2. Адаптация при заданном корне из оценочной корреляционной матрицы // Изв. вузов. Радиофизика. 1992. №11-12. С.969-992.

- 15. Леховицкий Д.И., Флексер П.М. Статистический анализ разрешающей способности адаптивных алгоритмов спектрального оценивания // Международная НТК "Современная радиолокация". Тезисы докладов. Киев, **1994**. С.134.
- 16. **Прудников А.П., Брычков Ю.А., Маричев О.И.** Интегралы и ряды. Дополнительные главы. М.: **Наука, 1986**. 800 с.
- 17. Бартенев В.Г. Применение распределения Уишарта для анализа эффективности адаптивных систем селекции движущихся целей // Радиотехника и электроника. 1981. т.26 №2. С.356.
- 18. Пикаев И.К. Плотность распределения оценки комплексного коэффициента корреляции // Радиотехника и электроника. 1990. т.35. №5. С.1092.
- 19. Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. М.: Радио и связь, 1981. 416 с.
- 20. Абрамович Ю.И. Регуляризованный метод адаптивной оптимизации фильтров по критерию максимума отношения сигнал/помеха // Радиотехника и электроника. 1981.- т.26.- №3.- С.543-551.
- 21. Леховицкий Д.И., Атаманский Д.В., Кириллов И.Г., Зарицкий В.И. Сравнение эффективности адаптивной обработки в произвольных и центрально-симметричных ФАР // Антенны. 2000. №1. С.99-103.
- 22. Бакут П.Д., Большаков Н.А. и др. Вопросы статистической теории радиолокации. т.1. М.: Сов. Радио, 1963. 424 с.